
*** MICROBLAZE USERS READ ME ***
This method is very difficult to implement if you are using microblaze in your design.
This is because microblaze requires a MIG component to operate, however, the MIG
component instantiates the XADC IP by default and there is only one analog to digital
converter on the Nexys Video board. Thus, the only way to use XADC and microblaze is
to use the MIG wizard to set up the MIG component by hand and disable the XADC
inside the MIG while doing so. This is extremely confusing to do on your own and I
could not find any documentation on how to do it. If you do manage to figure this out,
you’ll need to visit the link below for more details on how to use the XADC to supply the
MIG with temperature readings. https://www.xilinx.com/support/answers/51687.html

I do not believe microblaze has a problem with digital GPIO ports so an external ADC
can probably still be used to supply digital signals through the digital GPIO ports (you
could also use the XADC IP on another board then wire the two boards together).

How to use single channel XADC IP in VHDL
This write-up will discuss how to use the XADC IP to convert a single analog input into a
digital signal for VHDL to use. The XADC IP has more options that are not explained
here but are described in the two videos linked below. This write-up is based primarily
on the first video but translated from Verilog to VHDL at the end.

https://www.youtube.com/watch?v=TFrrwk0VYjc&t=2100s
https://www.youtube.com/watch?v=2j4UHLYqBDI

IP instantiation will be covered first, then how to wire the ports, then how to create/use
testbench, then finally how to connect the sensor to the Nexys board.

https://www.xilinx.com/support/answers/51687.html
https://www.youtube.com/watch?v=TFrrwk0VYjc&t=2100s
https://www.youtube.com/watch?v=2j4UHLYqBDI

IP Instantiation Tutorial
1) Go to IP catalogue, search for XADC and double click the XADC wiz.
2) The wiz should open to the ‘Basic’ tab as shown below.

a) Interface Options: We will use DRP for simplicity. AXI4Lite can be used
with microblaze (if you can figure out the problem above).

b) Startup Channel Selection: We will be using a single channel for this
design. The channel sequencer can also be used if you need more than
one analog signal converted. You may need to do additional research to
use the sequencer as it will not be totally discussed here.

c) Timing Mode: We will use continuous so the signal is always being
updated. Event Mode will only cause a signal to be generated if an event
triggers the XADC.

d) Everything else should be left to default for this design.

3) ADC Setup tab
a) Sequencer Mode: Only used for channel sequencer
b) Channel Averaging: Averages the signal so there are less extreme

outliers. Isn’t required for this design but can be used.
c) Leave everything else set to default values.

4) Alarms Tab
a) For this design we will uncheck all alarms. If you need their values you

may need to utilize the channel sequencing option in the Basic tab.

5) Single Channel Tab
a) Select Channel: We will use the ‘VP VN’ pin option found in the drop down

menu. If using a channel sequencer, more rows will be available and you
can set them to the VAUXP/N pins.

b) Channel Enable: Only toggleable for the channel sequencing mode. Can
be used to disable specific channels.

c) Bipolar and Acquisition time disabled for this design. Reference XADC
documentation in top left of wizard as shown below for their uses.

6) Summary Tab
a) My design summary is shown below. Press OK to complete the design.

How to wire XADC Ports
1) The component and instantiation declarations can be copy/pasted from Sources

-> IP Sources -> IP -> XADC -> Instantiation Template -> xadc.vho.
a) Note: I named my instantiation “xadc_fpro” as seen in the image below

2) I created an XADC entity as shown below (left) so I could simply supply a clk,
reset, and voltage then read the data coming out. (This XADC_TEST file is
provided along with my testbench)

a) Looking at the code to the right, signals were created for all of the ports
not declared in the entity port map.

b) Note: eoc is connected to den_in. EOC goes high when the converted
value is ready to be read so I connected this to the read enable so the
data is read as soon as it is ready. Also, dwe_in is set to 0 because we are
not writing anything to the XADC in this design. Finally, daddr_in allows
you to select which channel in the XADC you read the data from. This
signal has channel_out appended to the end so that it always reads from
the last channel that was written to. If using a channel sequencer, this may
need to be changed so you can manually select the channel.

How to create XADC Test Bench
1) Declare your XADC entity and any extra signals as usual. (My entity is

XADC_TEST)
2) Create a 100MHz clock and a process to start the tb with reset high. This can be

seen below.

3) Now you will need to add “design.txt”. To do this, select Add Sources -> Add or
Create Sim Sources -> Add File -> (Navigate to your design, mine is simply
XADC) -> (your design name).ip_user_files -> mem_init_files -> design.txt

a) The testbench will automatically read test values from the design.txt file if
you left the Analog_Sim_File_Options set to default in the Basic tab of the
XADC wiz.

b) The values in the design.txt file can be changed but be careful to change
the correct values since the organization of the file is a bit weird.

4) Run the simulation and make sure you’re displaying the values straight from the
XADC on the waveform. The VP/VN values from the design.txt file will not be
displayed here but their converted values should be displayed as 16 bit hex
values coming out of do_out.

How to connect your analog sensor
Important: The VP VN ports used in this design only accept up to 1V so make

sure your sensor either outputs a max of 1V or you use a voltage divider to reduce the
output to a max of 1V. VAUX ports (circle 21 below) may have different tolerances but
make sure to read the board’s documentation (linked below) before trying higher
voltages. https://reference.digilentinc.com/reference/programmable-logic/nexys-video/reference-manual

I powered my sensor with the 3.3V VCC and ground ports found in the digital
GPIO blocks (denoted below by the 4th circle). My sensor outputs a max of 3.3V so I
used a voltage divider to reduce this to 1V max. I then connected VN to ground and VP
to the voltage divider. VP and VN pins are denoted below by the 16th circle. My final
project routed the VP/VN ports all the way to the top VHDL file and did not need the
VP/VN pins to be enabled in the constraint file. This may just be a convenient bug but
I’m not sure. I believe the VAUX pins need to be uncommented in the constraints file if
you’re using them for a channel sequencer.

https://reference.digilentinc.com/reference/programmable-logic/nexys-video/reference-manual

